Automatic Image Orientation Detection Using the Supervised Self-organizing Map
نویسندگان
چکیده
Automatic detection and correction of image orientation is of great importance in intelligent image processing. In this paper, we present an automatic image orientation detection algorithm based on the supervised selforganizing map (SOM). The SOM is trained by using compact and efficient low-level chrominance (color) features in a supervised manner. Experiments have been conducted on a database containing various images with different compositions, locations, and contents. The proposed algorithm achieves an accuracy of 75% using the SOM trained by 600 images. In comparison with three peer systems, the proposed system achieves decent accuracy with the compact feature vector, the minimum training time, and the minimum training data. This framework will bridge the gap between computer and human vision systems and is applicable to other problems involving semantic content understanding.
منابع مشابه
Kohonen Self Organizing for Automatic Identification of Cartographic Objects
Automatic identification and localization of cartographic objects in aerial and satellite images have gained increasing attention in recent years in digital photogrammetry and remote sensing. Although the automatic extraction of man made objects in essence is still an unresolved issue, the man made objects can be extracted from aerial photos and satellite images. Recently, the high-resolution s...
متن کاملA Method for Body Fat Composition Analysis in Abdominal Magnetic Resonance Images Via Self-Organizing Map Neural Network
Introduction: The present study aimed to suggest an unsupervised method for the segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in axial magnetic resonance (MR) images of the abdomen. Materials and Methods: A self-organizing map (SOM) neural network was designed to segment the adipose tissue from other tissues in the MR images. The segmentation of SAT and VA...
متن کاملColor and Texture Based Wood Inspection with Non-supervised Clustering
The appearance of sawn timber has huge natural variations that a human inspector easily compensates for in his brain when determining the types of defects and the grade of each board. However, for automatic wood inspection systems these variations are a major source of complication. For instance, normal wood grain and knots should be reliably discriminated in all circumstances, but simple thres...
متن کاملAutomatic Unsupervised Segmentation of Retinal Vessels Using Self-Organizing Maps and K-Means Clustering
In this paper an automatic unsupervised method for the segmentation of retinal vessels is proposed. A Self-Organizing Map is trained on a portion of the same image that is tested and K-means clustering algorithm is used to divide the map units in 2 classes. The entire image is again input for the Self-Organizing Map, and the class of each pixel will be the class of the best matching unit on the...
متن کاملHandwritten Tamil Character Recognition Using RCS Algorithm
Handwritten character recognition is a difficult problem due to the great variations of writing styles, different size and orientation angle of the characters. The scanned image is segmented into paragraphs using spatial space detection technique, paragraphs into lines using vertical histogram, lines into words using horizontal histogram, and words into character image glyphs using horizontal h...
متن کامل